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LONG-WAVELENGTH ANALYSIS OF THE DIRECT 
CORRELATION FUNCTION FOR COULOMB 

LIQUIDS 

K. I. GOLDEN* and N. H. MARCH 

Theoretical Chemistry Department, University of Oxford, 
5 ,  South Parks Road, Oxford OX1 3UB, UK. 

(Received 26 August 1992) 

The long-wavelength structure of the cooperative part Ec((k) of the direct correlation function 
F(k) = E,(k) + Ec(,(k) is inferred by comparing its known potential part Ep(k) (Kumar et a/., Phys. Chem. 
Liquids, 11, 271 (1982)) with a similarly structured part which quite naturally emerges from the 
Ornstein-Zernike relation plus the first Born-Green-Yvon equation for the one-component plasma. 

KEY WORDS: One-component plasma, compressibility. 

1 INTRODUCTION 

Some time ago, Kumar et al. '*' proposed that, for reasons of consistency between 
virial and long-wavelength compressibility considerations, the Ornstein-Zernike 
direct correlation function c(r) can be written as the sum of two contributions 

where the subscripts p and c refer respectively to the potential and cooperative 
contributions. The potential piece 

i a  
= -/34(r) - P@(r)  ~ - n2V.  rh(r); = (k,T)-' 

2dn an 

for &dimensional systems was defined to satify the asymptotic condition: 

c(r) = -Pq(r);  large r limit. (1.3) 

* On leave from the Department of Computer Science and Electrical Engineering, The University of 
Vermont 05405, USA. 
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60 K. 1. GOLDEN AND N. H. MARCH 

In Eq. (1.2), g(r) = exp(-PU(r)) is the pair correlation function defined in terms of 
the potential of mean force V(r) while h(r) = g(r) - 1 is the total pair correlation 
function. Equation (1.2) is valid both for (a) neutral liquids with pair potentials 4(r) 
dropping off faster than l/rd and (b) the one-component plasma (OCP) with a 
charge-compensating background3. 

As to the cooperative contribution, thermodynamic consistency requires that 

S,(k = 0) = n dr c,(I) = 0. s 
Apart from the condition (1.4), an explicit structure for E,(k) has yet to be worked out. 

For the class of density-independent pair potentials &I) which have Fourier 
transforms &k), it is tempting to explore the structures of 2,(k) and c",(k) by comparing 
the Fourier-transformed Eq. (1.2) for S,(k) with that in an alternative representation 
of F(k) defined through 

?(k) = 6,(k) + 6,(k),  (1.5) 

In this, also exact, representation of c"(k), g,(k) and 6,(k)  are defined through the 
equations: 

and 

b,(k) = - 
I - n C ( k ) '  

Equations (1.6H 1.8) result from the combination of the Omstein-Zernike relation 

1 n i ( k )  
S ( k )  1 + n&k) 

S(k) = 1 - ~ = 

and the first Born-Green-Yvon (BGY) equation linking the total pair and triplet 
correlation functions and f. In this paper, we carry ou t  the investigation of the link 
between the b's and the c's above, at long wavelengths for the simplest of all Coulomb 
liquids; the strongly correlated OCP. 

By definition, Eq. (1.5) satisfies the compressibility rule 

(1.10) 
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DIRECT CORRELATION FUNCTION FOR OCP 61 

derived from 
kBT S(k 4 0) = 

T 

(1.11) 

While the explicit structure of Zp(k) in terms of h(k) is already known (from Eq. 
(1.2)), the structure of i , ( k )  is not. Thus, a comparison between the two is possible 
only if one has additional information about the triplet correlation function 2, eg., 
approximating 2 in terms of clusters. This is the rationale for the long-wavelength 
decoupling approximation (4.1) below, which is expected to reproduce Eq. (1.10) to 
a high degree of accuracy. 

The plan of the paper is as follows. In Section 2 we transform Eq. (1.2) for cp(r)  
into k-space formulae for the two-dimensional (2d) OCP with In r pair potential and 
for the 3d OCP. The former is an ideal reference OCP whose thermodynamic 
properties have been studied by a number of  investigator^^-^. In Section 3, we then 
calculate cp(k + 0) and in section 4 we analyze the long-wavelength behaviour of h,(k) 
and i c (k ) .  In Section 5, the results of the previous two sections are compared and 
conclusions are drawn. 

2 k-SPACE FORMULATION O F  cp(r)  

The aim below is to calculate the Fourier transform 

c",(k) = n dr exp( - ik - r)cp(r) s 
for the 2d OCP with In I pair potential and also for the 3d OCP. Let us start with 
the 2d OCP. 

The Fourier transform of its pair potential $ ( I )  = -C2 In r is $(k) = 27t2/k2; where 
2 is the charge per unit length. The coupling strength for this system is characterized 
by the plasma parameter 

r = p e 2  (2.2) 

where B- is the thermal energy per unit length. The steps leading to the Fourier 
transformation of Eq. (1.2) with d = 2 are as follows; 

4 an  s - -  
= -pn$(k)  - - - n2 dr rh(r) .  V(exp( -ik - r )  In r )  

dr h(r)(ik - r )  In r exp( - ik - r) 
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62 K. 1. GOLDEN AND N. H. MARCH 

Turning next to the 3d OCP, the Fourier transform of its pair potential +(r) = 
(Ze)2/r is $(k)  = 4 1 r ( Z e ) ~ / k ~ .  The coupling strength is now characterized by r = 
fi(Ze)2/a, where a = (3/41rn)”~ is the ion sphere radius. Setting d = 3 in Eq. (1.2) and 
repeating the steps above, we arrive at 

+ dr(ik . r)&r)h(r) exp( - ik . r) s 
3 LONG-WAVELENGTH BEHAVIOUR OF t p ( k )  

Let us now turn to treat the long wavelength behaviour of c‘,(k), starting again with 
the 2d OCP. 

3.1 2d OCP 

At small k ,  Eq. (2.2) readily yields the result 

t P ( k  -+ 0) = -Dn&k -+ 0) + 
3 8 Sn 

From the exact equation of state7v8 specific to this reference OCP: 

p = nkBT( I - $), 
the isothermal compressibility is calculated to be given by 

since r = p P 2  is density independent. Equation (3.1) can therefore be written as 

(3 .3)  

In view of the condition (1.4), the expression (3.4) satisfies the compressibility rule 
(1.10) and is therefore exact through O(ko). 
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DIRECT CORRELATION FUNCTION FOR OCP 63 

3.2 3d OCP 

Turning next to the 3d OCP, the k + 0 limit of Eq. (2.4) is similarly found to be 

With the equation of state given by9 

whence 

Eq. (3.5) takes the form 

(3.7) 

which is again in precise accord with the compressibility rule (1.10). 

4 LONG WAVELENGTH ANALYSIS OF h,(k) AND h,(k) 

While the exact long-wavelength behaviour of the direct correlation function is 
known (cf Eq. (1.10)) it is still necessary to evaluate d,(k + 0) and 6,(k -, 0) separately 
if one is to make contact with the analysis of the previous section. To carry out the 
evaluation, we shall appeal to the decomposition approximation for the total triplet 
correlation function 

for arbitrary coupling strength r.lo Substitution into Eq. (1.8) and the first BGY 
eqn gives 
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and 

K. I. GOLDEN AND N. H. MARCH 

1 
1 k * q  

S(k) = - 

1 + Bn&) - - 1 
V , ,  

Bn&q)S(q)h(Ik - Q I) 

where V, denotes the &dimensional 'volume'. 

(4.3) 

4.1 2d OCP 

The evaluation of Eq. (4.3) for the 2d OCP is carried out via the following steps: 

In reaching the final step in Eq. (4.4), we have exploited the fact that h(0) = - l j n  
for an OCP. From Eq. (4.4), it follows that 

1 
r' 

gn&k) + 1 - - 
4 

S(k -+ 0) = ~ 

Substituting Eq. (4.5) into (4.2), one arrives at 

whence from Eqs. (1.6) and (1.7): 

r k2 
6,,(k -+ 0) =I -Pn~$(k) + - - ~ 

4 8nn 
- -  

(4.5) 
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DIRECT CORRELATION FUNCTION FOR OCP 

and 
- k2 
b,(k 0) = -. 

8nn 

Addition of Eqs. (4.7) and (4.8) per Eq. (1.5) gives Eq. (1.10). 

4.2 3d OCP 

For the 3d OCP, repetition of the 

LP(k -+ 0) = -pn&k -+ 0) 

and 

where 

65 

(4.8) 

above procedures results in 

Eqs. (4.9) and (4.10) add to give the direct correlation function 

(4.10) 

(4.1 1) 

(4.12) 

While the expression (4.12) is structurally correct, it fails to quantitatively satisfy the 
compressibility requirement (1.10). The discrepancy between the two results must 
surely originate from the choice of the decomposition approximation (4.1) which, 
strictly speaking, is best for weak coupling situations. Indeed, it can be seen that for 
F’ < 1, substitution of the ‘Debye-Huckel’ pair correlation function 

(4.13) 

into Eq. (4.11) leads to I = 0. As an aside, we may note that the defect in the 
model decoupling approximation notwithstanding, in the case of the 2d OCP, it is 
the specific equation of state (3.2) which precludes the possibility of occurrence of 
such a discrepancy. In any case, it seems a reasonable assumption that the appearance 
of I is, in fact, superficial, and that it can accordingly be omitted from Eqs. (4.9), 
(4.10) and (4.12). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



66 K. 1. GOLDEN AND N. H. MARCH 

5 CONCLUSIONS 

Equations (4.7) and (4.9), with I set equal to zero as discussed immediately above, 
are identical to Eqs. (3.4) and (3.8) respectively through O(ko); all satisfying the 
compressibility rule (1.10). 

The principal accomplishment of the present work is that, at  long wavelengths, 
the potential part of the direct correlation function has been identified with a similarly 
structured term which emerges in a natural way from the combination of the 
Ornstein-Zernike relation with the Born-Green-Yvon equation for the OCP liquid. 
As a consequence of this identification, the long-wavelength structure of Q k )  for the 
&dimensional OCP liquid is inferred: the conclusion being that 

Equation (5.1) is certainly thermodynamically consistent. 
We have not attempted to analyze i , ( k )  and 6,(k) in Eq. (1.5) at short wavelengths. 

The assumed decoupling approximation (4.1) would surely have to be transcended 
in such a study. One demonstration that it is seriously flawed in the large-k domain 
is that Eq. (4.1) would lead to a decay as k-' for 6 J k )  at large k. Because of this slow 
rate of decay, one would be lead to an unphysical divergence in b,(r) at small r.  
Further study of the three-body correlations is evidently an important direction for 
progress away from the long-wavelength limit. 

A cknowledgemenls 

K. 1. G. would like to thank Professor N. H. March and the Theoretical Chemistry Department a t  the 
University of Oxford for hospitality. K. 1. G.'s contribution to  this research has been partially supported 
by U S .  National Science Foundation Grant No. PHY-9115695 and by the University of Vermont's 
1992-93 University Scholar Award. 

References 

1. N. Kumar, N. H. March and A. Wasserman, Phys. Chem. Liquids, 11, 271 (1982). 
2. See also N. H. March and G. Senatore, Phys. Chem. Liquids, 13, 285 (1984). 
3. R. 1. M. A. Rashid, G.  Senatore and N. H. March, Phys. Chem. Liquids, 16, 1 (1986). 
4. R. Calinon, K. I. Golden, G .  Kalman and D. Merlini, Phys. Rev. AZO, 329 (1979). 
5. P. Bakshi, R. Calinon. K. I .  Golden, G .  Kaiman and D. Merlini, Phys. Rev. A20, 336 (1979); ibid A23, 

6. B. Jancovici, Phys. Rev. Left. 46, 386 (1981). 
7. R. M. May, Phys. Left. A25, 282 (1967). 
8. G. Knorr, fhys. Lefr AZS, 166 (1968). 
9. J.-P. Hansen, Phys. Reu. AS, 3096 (1973). 

915 (1981). 

10. H. Totsuji and S. Ichimaru, frog. Theor. Phys. 50, 753 (1973); ibid 52, 42 (1974). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


